
Cloud Clinic 2

Data Publication
27-FEB-2025

Rob Fatland (rob5@uw.edu), Naomi Alterman
“Shoebox to Science Gateway: Data publication and API access”

https://www.cloudbank.org/office-hour-slides

CloudBank “Cloud Clinic” series

● Cloud Clinics: build-path feasibility
○ Data science environments on public cloud platforms

● Clinic 1: Massive cost savings from preemptible instances

● Clinic 2: Science Gateway: data publication and access
○ Simple: Periodic table of elements
○ Complex: Ocean sensor data

● Jargon: NoSQL, Serverless, API, VSCode

● recipe ‘Knowing enough to build with confidence’ sub-text

Cloud Clinic 2 Abstract

Organizations such as Science Gateways and the eScience Institute idealistically
promote open science through data sharing; and you may wish you had the skills to
build something that puts you firmly in that camp. Go open science! But there is a
catch: Building something that works is much easier than building something that works
that is secure. And then there is the inevitable catastrophe once you have it up and
running: You have a new idea and you wish to expand on what your system’s baseline
design was intended to do. No fear: This clinic will give you the basic one-two-three
punch to build a data server with a built-in API, make it secure enough (assuming you
are not working with personalized human data), and expand it in a new direction after it
is up and running. We will use as a working example the supposition that you have
invented the periodic table of elements and that you subsequently discovered crystal
field theory. We address the pressing question: Can a cloud-hosted NoSQL chemistry
data system be ACIDic? Atomic Consistent Isolated Durable

Who Is Giving This Talk

The narrator is not a computer scientist

The narrator does have experience with shoeboxes.

The narrator subscribes to the open science philosophy

Rob’s First Law (R1)

Data is never acquired in the manner in which it is used.

The Shoebox Problem

Hey look what I found under the desk! A shoebox of data tapes! Gosh it
would be cool to publish this data on the web for open use… but how?

Digression: Cloud platforms for data science
● Research roles

○ Principle Investigator
○ Administrator$
○ Builders (perception: lot of work!)
○ Users (including external/unknown Users)

● Case study
○ Ocean observatory: One-sample-per-second data from sensors
○ Scientist has a “2 lines of code” view of this data

● Demystify data publication and access

…and now a moment of organization structure…

CloudBank
Facilitating research

Cloud Platforms

Associated
Marketplaces

HPC Facilities

Third Party
Technologies

Funding Agencies

Associated
Programs

Us

Research team
(4 roles)

Colleague

CloudBank Support Framework
● Portal https://cloudbank.org
● Learning https://cloudbank-project.github.io/cb-resources/
● Community https://community.cloudbank.org/
● Studies… example SkyPilot: https://github.com/oorjitchowdhary/cifar-on-spot-vm

https://cloudbank.org
https://cloudbank-project.github.io/cb-resources/
https://community.cloudbank.org/
https://github.com/oorjitchowdhary/cifar-on-spot-vm

Us

The Internet The Cloud

Object Storage
“Bucket”, “Blob”
Capacity: Infinite

Latency: Low
URL: Yes if desired

Persistent: Yes

DockerHub

GitHub

Spot Market

The Cloud-for-Research Ecosystem

Profusion of Services

Returning to today’s topic:
Public object storage “Wheel your data out to the curb”

Done!

Approaches to data publication: Access implications
Where the data are
published

Advantages Disadvantages

A shoebox or USB drive Low cost (USPS media rate), low effort Does not scale, does not address R1

Google Drive, OneDrive,
DropBox etcetera

Pretty easy on the effort scale, access is
intuitive and can be managed by Share

Limited volume, hard to cite/find, does not scale,
does not address R1

Cloud object storage:
S3 bucket, etcetera

Infinite volume, pretty cheap, better
security with some added cloud machinery

No flexibility, low baseline security. The burden is
on the Downloader to make sense of the data.

Cloud (No)SQL
Database + Virtual
Machine

Flexible, scales, addresses R1, secure,
good example of open science, probably
fun

Maintenance of operating cloud virtual machines at
scale (patches etc); can be more costly than (5);
track and cover cost of operation

Cloud NoSQL Database
+ serverless API

Flexible, scales, addresses R1 , secure,
leadership by example in open science,
opens doors to collaboration, definitely fun

Time investment to learn, build and maintain the
technology; must track and cover cost of operation

Data Publication and Access

Options beyond wheeling data out into the street for anyone to download...

Here we persevere to ‘serverless’ with two { simple, complex} examples

Simple: Publish “sparse/wide” periodic table: id, cols. Query via API (browser):

https://pythonbytes.azurewebsites.net/api/lookup?name=Sodium

Complex: Publish data from a UW-based ocean observatory. Access by API; but now
from Python: Use a published Client and just 2 lines of code

https://oceansensors.azurewebsites.net/api/sensors?start=2022-01-02%2010:00:00&stop=2022-01-02%2010:00:02

Where to begin: Naomi Alterman’s MSE544 periodic table walkthrough

https://pythonbytes.azurewebsites.net/api/lookup?name=Sodium
https://oceansensors.azurewebsites.net/api/sensors?start=2022-01-02%2010:00:00&stop=2022-01-02%2010:00:02

Where to begin: Naomi’s MSE544 Walkthrough

https://cloudbank-project.github.io/az-serverless-tutorial/

https://cloudbank-project.github.io/az-serverless-tutorial/

Simple

Complex: The road to ‘two lines of code’

● Stage data in tabular / CSV form
● Configure and pre-load a NoSQL database
● Write and test a data access API: Publish as a serverless function
● Write and test a Client that uses this API
● Publish the Client: GitHub repo or as a Python library
● Colleague: $ git clone https://github.com/my-org/oceanclient

and voila…

import oceanclient as oc
dfT, dfS = oc.Chart('2022-01-05', 9)

Chart

Chart

Chart

Chart

Chart

Chart

Data

Time to build: Periodic Table example

● Cloud subscription, log in to the portal, navigate: 2 hours + admin time
● Start a cloud VM, log in, run some commands: 2 hours
● Start a NoSQL database, install data (periodic table): 2 hours
● Create an Azure Function App: 2 hours
● Wire it all up: 2 hours

Total with overhead, background reading, non-recipe approach: 2 days

After this time investment one has a very good grasp of the process

New to cloud infrastructure: More background learning

Experienced with cloud: One day

Build a sophisticated custom data system: months

Resources

MSE544: https://cloudbank-project.github.io/az-serverless-tutorial/

Internet-2: C.L.A.S.S. Cloud Learning And Skills Sessions

The Carpentries: Basics of git, bash, Python

nexus: annotation of Simple and Complex cases

your browser search window

https://github.com/robfatland/oceanclient

https://cloudbank-project.github.io/az-serverless-tutorial/
https://github.com/robfatland/nexus/blob/gh-pages/data/api.md
https://github.com/robfatland/oceanclient

What is nexus?

‘Repetition legitimizes… repetition legitimizes…’ -Adam Nealy

nexus is a GitHub repo

…the narrator’s process notes…

how to, pointers, annotations, gotchas

(the details I forget after 2 days)

https://robfatland.github.io/nexus/data/api

https://robfatland.github.io/nexus/data/api

On R1 and scale

Two aspects of scale

- Volume: accommodate addition of more data
- Voracity: accommodate a community’s growing data demand

R1 : A deep topic, core = data cleaning, formatting, synthesis

‘How much effort is needed to get data into a shareably useful format?’

Approaches to data publication: Access implications
Where the data are
published

Advantages Disadvantages

A shoebox or USB drive Low cost (USPS media rate), low effort Does not scale, does not address R1

Google Drive, OneDrive,
DropBox etcetera

Pretty easy on the effort scale, access is
intuitive and can be managed by Share

Limited volume, hard to cite/find, does not scale,
does not address R1

Cloud object storage:
S3 bucket, etcetera

Infinite volume, pretty cheap, better
security with some added cloud machinery

No flexibility, low baseline security. The burden is
on the Downloader to make sense of the data.

Cloud (No)SQL
Database + Virtual
Machine

Flexible, scales, addresses R1, secure,
good example of open science, probably
fun

Additional maintenance overhead and cost
operating cloud virtual machines at scale: Installing
patches etcetera; must track and cover cost.

Cloud NoSQL Database
+ serverless API

Flexible, scales, addresses R1 , secure,
leadership by example in open science,
opens doors to collaboration, definitely fun

Time investment to learn, build and maintain the
technology; must track and cover cost

Simple Goal: Publish the periodic table of elements

…and provide an API; test from a browser tab or code…

Complex goal: Interrelated data and metadata

We have profile metadata and observational data from two sensors

Next: Review the basic build / collaborate structure

Then: A demo

Finally: Some details we hope are of interest, Q&A

In English

The blue researcher/builder publishes both data and an access API to the cloud.
This is open to everyone.

The researcher/builder next publishes an example Client on GitHub.

The green colleague downloads the Client and uses it to explore the data.

“Exploring the data” happens without needing to know how the system was built.

Cloud Portal

IAM
Serverless

VM

NoSQL

Spend

bash Jupyter

VSCode (VM) Browser

Jupyter

profiles

temp

salinity

NoSQL DB

Cloud VM

VSCode

Browser GitHub

oceanclient

Function
Apps

Previous slide simplified

● My laptop
● Azure Portal
● VM (VSCode Server)
● Azure Functions
● Azure CosmosDB

I use the Naomi (MSE544) tutorial to
orchestrate these resources; and then I
follow the narrative for the periodic table.

In the process I learn how the end result (a
data API) is constructed from data in a
NoSQL database wired up to a serverless
function triggered by HTTP requests.

I have enough now to build my own
Shoebox Gateway. I also build a custom
Shoebox Client that I publish on GitHub.

Demo

Details…

Detail: Two days of profiler metadata

Detail: Why NoSQL?

● Actually everything here could be done in SQL
● Transactions were engineered to be safe during the advent of SQL
●

NoSQL

Link to NoSQL lecture notes

https://docs.google.com/presentation/d/1-eQ6qgeTaExS_6Cxh7Wq9LFpqbD49ZX3kXazOPNc7Js/edit?usp=sharing

ACID view of database transactions

Atomicity: Transactions comprised of many statements are treated as single
events

Consistency: Transactions move between consistent states of the database

Isolation: Analogous to linearity, in that multiple transactions proceeding
asynchronous result in the same state as if they were executed sequentially

Durability: Completed transactions are not lost in the face of system failures such
as power outage. Often implies a non-volatile memory component.

What does ACID mean for research data?

The event of interest is a transaction which changes the state of the database.
Scientific data are subject to change. Derived data can be re-derived using new
algorithms or otherwise modified or annotated. Sensor data over particular time
intervals may be invalidated due to becoming uncalibrated. A time series may be
augmented with new data products, for example water density inferred from
temperature, salinity and pressure.

The ACID acronym calls out a set of desirable database attributes that ensure the
data are available and won’t be corrupted by colliding transactions and such.

A NoSQL Timeline

(more on NoSQL follows after
we push through with a Goal 1
lightning tour: Periodic Table)

Detail: Testing the profile API in VSCode

Detail: Moving the profile API up to the big leagues

Detail: The Azure portal in action

Detail: VSCode in action

Note: The nexus documentation website points out stop/start ideas such as defining an
alias for restoring the working environment (in this case ‘robotron’); then printing a
reminder of this alias as the bash shell starts when launching VSCode as a Virtual Machine
terminal-slash-development environment.

VSCode works as an IDE on any VM (not just Azure)

Detail: Azure Database Service

Detail: Creating a NoSQL Database in CosmosDB

Detail: In-portal Data Explorer

Detail: Azure portal: Directed to the NoSQL database

Detail: API self-documenting

Detail: Simplest possible Python Client

import requests

r = requests.get(“https://oceanography.azurewebsites.net/api/info”)

print(r.text)

 produces:

https://oceanography.azurewebsites.net/api/info

…same again but using the API to get a profile…

Detail: Self-testing???

Upon sober recursion I believe api
testing is better done by a non-self.

Detail: More on NoSQL

MongoDB is the original open source NoSQL DBMS

https://www.mongodb.com/resources/basics/databases/nosql-explained

https://www.mongodb.com/resources/basics/databases/nosql-explained

Conclusions

● Open science while not trivial is worth consideration of the effort investment
● Publishing data for open access is facilitated by cloud tech

○ API in serverless functions tapping in NoSQL
● This deck (to be made available) ties to other resources

○ The MSE544 “Serverless Azure Tutorial” by Naomi Alterman
○ Publishing / accessing cloud data: Periodic table and ocean observatory examples

● The CloudBank help desk is help@cloudbank.org

Thanks!

-The CloudBank team
https://docs.google.com/presentation/d/1qYIf3mTcfYtRY_I-zPkaqbIFLe2cHkuAIwnGnJpRQLc

https://cloudbank-project.github.io/az-serverless-tutorial/
https://github.com/robfatland/nexus/blob/gh-pages/data/api.md
mailto:help@cloudbank.org
https://docs.google.com/presentation/d/1qYIf3mTcfYtRY_I-zPkaqbIFLe2cHkuAIwnGnJpRQLc/edit#slide=id.g327a39294ed_0_12

4 Demo Backup Slides: What is supposed to happen

4 Demo Backup Slides: What is supposed to happen

4 Demo Backup Slides: What is supposed to happen

4 Demo Backup Slides: What is supposed to happen

