o
QD CloudBank

Cloud Clinic 2

Data Publication
27-FEB-2025

Rob Fatland (robd@uw.edu), Naomi Alterman
“Shoebox to Science Gateway: Data publication and APl access”

$ git clone https://github.com/robfatland/oceanclient

https://www.cloudbank.org/office-hour-slides

CloudBank “Cloud Clinic” series

Cloud Clinics: build-path feasibility
o Data science environments on public cloud platforms

Clinic 1: Massive cost savings from preemptible instances
Clinic 2: Science Gateway: data publication and access

o Simple: Periodic table of elements

o Complex: Ocean sensor data

Jargon: NoSQL, Serverless, API, VSCode

reetpe ‘Knowing enough to build with confidence’ sub-text

$ git clone https://github.com/robfatland/oceanclient

Cloud Clinic 2 Abstract

Organizations such as Science Gateways and the eScience Institute idealistically
promote open science through data sharing; and you may wish you had the skills to
build something that puts you firmly in that camp. Go open science! But there is a
catch: Building something that works is much easier than building something that works
that is secure. And then there is the inevitable catastrophe once you have it up and
running: You have a new idea and you wish to expand on what your system’s baseline
design was intended to do. No fear: This clinic will give you the basic one-two-three
punch to build a data server with a built-in APIl, make it secure enough (assuming you
are not working with personalized human data), and expand it in a new direction after it
is up and running. We will use as a working example the supposition that you have
invented the periodic table of elements and that you subsequently discovered crystal
field theory. We address the pressing question: Can a cloud-hosted NoSQL chemistry
data system be ACIDic? Atomic Consistent Isolated Durable

$ git clone https://github.com/robfatland/oceanclient

Who Is Giving This Talk

The narrator is not a computer scientist

The narrator does have experience with shoeboxes.

The narrator subscribes to the open science philosophy

$ git clone https://github.com/robfatland/oceanclient

Rob’s First Law (R,)

Data is never acquired in the manner in which it is used.

The Shoebox Problem

Hey look what | found under the desk! A shoebox of data tapes! Gosh it
would be cool to publish this data on the web for open use... but how?

Digression: Cloud platforms for data science

e Research roles
o Principle Investigator
0 Administrator$
o Builders (perception: lot of work!)
o Users (including external/unknown Users)
e Case study
o QOcean observatory: One-sample-per-second data from sensors
o Scientist has a “2 lines of code” view of this data
e Demystify data publication and access

...and now a moment of organization structure...

Funding Agencies HPC Facilities

CloudBank

Facilitating research

Associated
Programs

Research team

>
(4 roles) — B gw
Associated Third Party
n \ ' Marketplaces Technologies

< databricks

Colleague

Cloud Platforms

CloudBank Support Framework

Portal https://cloudbank.org

Learning https://cloudbank-project.qithub.io/cb-resources/

Community https://community.cloudbank.org/

Studies... example SkyPilot: https://github.com/oorjitchowdhary/cifar-on-spot-vm
C‘\\'\? CloudBank o SUCCEBS STORES'®: GETAGCERS: LEARNY ‘ASDY

[| | Managed Services to Simplify Cloud Access for

Computer Science Research and Education

4
7

'-.\ R " 4 i ... - .,‘ A"»,_ .
.. e o\ L
Eligible NSF Solicitations Latest News
NSF 24-536: Computer and Information Science and E.... Cloud Training from Internet2: April 29 - May 10

https://cloudbank.org
https://cloudbank-project.github.io/cb-resources/
https://community.cloudbank.org/
https://github.com/oorjitchowdhary/cifar-on-spot-vm

The Cloud-for-Research Ecosystem Y
UE \ ‘
[

@

DockerHub

. & Profusion of Services
e
il —

Object Storage
_______________ “Bucket”, “Blob”
Capacity: Infinite
Latency: Low
URL: Yes if desired
Persistent: Yes

&/

0.0
I
GitHub The Internet

The Cloud

‘!E S3 Browser 11.7.E’Free Version (for non-commercial use only) - s o
Ac ets Files Bookmark i pgrade to Pro! Help

L{}s New bucket

Returning to today’s topic:
Public object storage “Wheel your data out to the curb”

Path: /

4 | P *.II- H BEE

< kilroybacku; >

] !I]
=] o e | N Em =
o HEEE | & | B
i L E BN BN

EEm= - = E=E EEEE

[) oxygen.nc

[') temperature.n
[] TCO2nc
[salinity.nc

#7.2016b. TAlk.nc
[') GLODAPV2.2016b silicate.nc
['] GLODAPv2.2016b.P04.nc

Size

16.33 MB
16.33 MB
16.33 MB
16.33MB
16.33MB
9791 MB
9791 MB
9791 MB

Done!

Approaches to data publication: Access implications

Where the data are
published

A shoebox or USB drive

Google Drive, OneDrive,
DropBox etcetera

Cloud object storage:
S3 bucket, etcetera

Cloud (No)SQL
Database + Virtual
Machine

Cloud NoSQL Database
+ serverless API

Advantages

Low cost (USPS media rate), low effort

Pretty easy on the effort scale, access is
intuitive and can be managed by Share

Infinite volume, pretty cheap, better
security with some added cloud machinery

Flexible, scales, addresses R,, secure,
good example of open science, probably
fun

Flexible, scales, addresses R, , secure,
leadership by example in open science,
opens doors to collaboration, definitely fun

Disadvantages

Does not scale, does not address R1

Limited volume, hard to cite/find, does not scale,
does not address R1

No flexibility, low baseline security. The burden is
on the Downloader to make sense of the data.

Maintenance of operating cloud virtual machines at
scale (patches etc); can be more costly than (5);
track and cover cost of operation

Time investment to learn, build and maintain the
technology; must track and cover cost of operation

Data Publication and Access

Options beyond wheeling data out into the street for anyone to download...
Here we persevere to ‘serverless’ with two { simple, complex} examples
Simple: Publish “sparse/wide” periodic table: id, cols. Query via API (browser):

https://pythonbytes.azurewebsites.net/api/lookup?name=Sodium

Complex: Publish data from a UW-based ocean observatory. Access by API; but now
from Python: Use a published Client and just 2 lines of code

https://oceansensors.azurewebsites.net/api/sensors?start=2022-01-02%2010:00:00&stop=2022-01-02%2010:00:02

Where to begin: Naomi Alterman’s MSE544 periodic table walkthrough

https://pythonbytes.azurewebsites.net/api/lookup?name=Sodium
https://oceansensors.azurewebsites.net/api/sensors?start=2022-01-02%2010:00:00&stop=2022-01-02%2010:00:02

Where to begin: Naomi's MSE544 Walkthrough

https://cloudbank-project.qithub.io/az-serverless-tutorial/

Serverless Azure Tutorials

Modules
| 1. VMs and Workstations

| 2. NoSQL Databases

3. Serverless Functions and
APIs

I Credits and acknowledgement

This website hosts a series of tutorials explaining how to
modules are intended to be followed in the order presen

Modules
1. VMs and Workstations
2. NoSQL Databases

3. Serverless Functions and APls

https://cloudbank-project.github.io/az-serverless-tutorial/

Slmple <« > C °5 https://pythonbytes.azurewebsites.net/api/lookup?name=Sodium
Pretty-print

[
{

"AtomicNumber": 11,
"Element": "Sodium",
"Symbol": "Na",
"AtomicMass": 22.99,
"NumberOfNeutrons": 12,
"NumberOfProtons": 11,
"NumberOfElectrons": 11,
"Period": 3,

"Group™: 1%

"Phase": "Solid",
"Radioactive": false,
"Natural"”: true,

"Metal": true,

"Nonmetal": false,
"Metalloid": false,
"Type": "Alkali Metal",
"AtomicRadius": 227,
"Electronegativity": 0.93,
"ionizationEnergy": 5.1391,
"Density": ©.97,
"MeltingPoint": 370.95,
"BoilingPoint": 1156,
"stableIsotopes": 1,
"Discoverer": "Sir Humphrey Davy",
"Year": 187,
"SpecificHeat": 1.228,
"NumberOfShells": 3,
"NumberOfValence": 1,
"id": "Sodium"

Complex: The road to ‘two lines of code’

Stage data in tabular / CSV form

Configure and pre-load a NoSQL database

Write and test a data access API: Publish as a serverless function
Write and test a Client that uses this API

Publish the Client: GitHub repo or as a Python library

Colleague: S git clone https://github.com/my-org/oceanclient

and voila...

import oceanclient as oc
dfT, dfS = oc.Chart('2022-01-05"', 9)

32.00

Temp deg C (red, lower x-axis) and Salinity ppt (blue, upper x-axis)

32.25

32.50 32.75 33.00

1 1 1

33.25

Chart

33.50

33.75

34.00

0

25

50 -

75

100 -

125

150 -

175 -

Start UTC: 2022-01-05 18:07:00.2

200
7.0

7.5

8.0 8.5 9.0

9.5

10.0

10.5

11.0

32.00

Temp deg C (red, lower x-axis) and Salinity ppt (blue, upper x-axis)
32.25

1

32.50 32.75 33.00

1 1 1

33.25

1

Chart

33.50

1

33.75

1

34.00

0

25 A

50 A1

75 -

100 ~

125 4

150 -

175 A

200

Start UTC: 2022-01-05 18:07:00.2

7.0

7.5

8.0 8.5 9.0

9.5

10.0

10.5

11.0

prep time 6.17 seconds; data vector length: 4380

32.00
0

Temp deg C (red, lower x-axis) and Salinity ppt (blue, upper x-axis)
32.50 32.75 33.00 33.25 33.50

32.25

3

& &

Chart

1

33.75

1

34.00

25 A

50 A

75

100 A

125 A

150 A

175 -

200

Start UTC: 2022-01-05 20:37:00.4 NOON local

7.0

7.5

8.0 8.5 9.0 9.5

10.0

10.5

11.0

32.00

32.50 32.75 33.00

1

33.25

Chart

33.50

Temp deg C (red, lower x-axis) and Salinity ppt (blue, upper x-axis)
32.25

33.75

34.00

0

25 A

50 A1

75 A

100 ~

125 -

150 A

175 -

Start UTC: 2022-01-06 00:22:00.8

200
7.0

7.5

8.0 8.5 9.0

9.5

10.0

10.5

11.0

32.00
0

Temp deg C (red, lower x-axis) and Salinity ppt (blue, upper x-axis)

32.25

1

32.50 32.75 33.00

1 1 1

33.25

1

Chart

33.50

1

33.75

'

34.00

25

50 A

75 1

100 A

125 -

150 A

175 A

Start UTC: 2022-01-06 02:37:00.0

200
7.0

7.5

8.0 8.5 9.0

9.5

10.0

10.5

11.0

32.00
0

32.50 32.75 33.00

1

33.25

Chart

33.50

Temp deg C (red, lower x-axis) and Salinity ppt (blue, upper x-axis)
32.25

33.75

34.00

25 A

50 A

75

100 A

125 A

150 A

175 4

200

Start UTC: 2022-01-06 04:47:00.2

7.0

7.5

8.0 8.5 9.0

9.5

10.0

10.5

11.0

dfs

4375

Data

Timestamp
2022-01-05 20:37:00.482559488
2022-01-05 20:37:01.482462720
2022-01-05 20:37:02.482989568
2022-01-05 20:37:03.482579456

2022-01-05 20:37:04.482899456

2022-01-05 21:49:55.597626880

depth
199.660778
199.662944
199.664009
199.659779

199.655482

15.886139

salinity
33.967098
33.967234
33.967048
33.966984

33.966795

32.415099

Time to build: Periodic Table example

Cloud subscription, log in to the portal, navigate: 2 hours + admin time
Start a cloud VM, log in, run some commands: 2 hours

Start a NoSQL database, install data (periodic table): 2 hours

Create an Azure Function App: 2 hours

Wire it all up: 2 hours

Total with overhead, background reading, non-recipe approach: 2 days
After this time investment one has a very good grasp of the process
New to cloud infrastructure: More background learning

Experienced with cloud: One day

Build a sophisticated custom data system: months

Resources

MSE544: https://cloudbank-project.qithub.io/az-serverless-tutorial/

Internet-2: C.L.A.S.S. Cloud Learning And Skills Sessions
The Carpentries: Basics of git, bash, Python

nexus: annotation of Simple and Complex cases

your browser search window

https://github.com/robfatland/oceanclient

https://cloudbank-project.github.io/az-serverless-tutorial/
https://github.com/robfatland/nexus/blob/gh-pages/data/api.md
https://github.com/robfatland/oceanclient

What is nexus?

‘Repetition legitimizes... repetition legitimizes...”-Adam Nealy

nexus is a GitHub repo

" the narrator’s process nOtes . Verify the version of Ubuntu using 1sb_release -a .

This block installs the miniconda package.

how to, pointers, annotations, gotchas
cd ~
1 which python3
(the detalls I forget after 2 dayS) git clone https://github.com/robfatland/ant
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -0 ~/miniconda3/minoconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh

To ensure access to miniconda from the command line, place the following line at the very end of ~/.bashrc :

export PATH=~/miniconda3/bin:$PATH

https://robfatland.github.io/nexus/data/api

https://robfatland.github.io/nexus/data/api

On R1 and scale

Two aspects of scale

- Volume: accommodate addition of more data
- Voracity: accommodate a community’s growing data demand

R, : A deep topic, core = data cleaning, formatting, synthesis

‘How much effort is needed to get data into a shareably useful format?’

Approaches to data publication: Access implications

Where the data are
published

A shoebox or USB drive

Google Drive, OneDrive,
DropBox etcetera

Cloud object storage:
S3 bucket, etcetera

Cloud (No)SQL
Database + Virtual
Machine

Cloud NoSQL Database
+ serverless API

Advantages

Low cost (USPS media rate), low effort

Pretty easy on the effort scale, access is
intuitive and can be managed by Share

Infinite volume, pretty cheap, better
security with some added cloud machinery

Flexible, scales, addresses R, secure,
good example of open science, probably
fun

Flexible, scales, addresses R, , secure,
leadership by example in open science,
opens doors to collaboration, definitely fun

Disadvantages

Does not scale, does not address R1

Limited volume, hard to cite/find, does not scale,
does not address R1

No flexibility, low baseline security. The burden is
on the Downloader to make sense of the data.

Additional maintenance overhead and cost
operating cloud virtual machines at scale: Installing
patches etcetera; must track and cover cost.

Time investment to learn, build and maintain the
technology; must track and cover cost

Simple Goal: Publish the periodic table of elements

...and provide an API; test from a browser tab or code...

Modules This website hosts a series of tutorials explaining how to use Microsoft's Visual Studio
| 1. VMs and Workstations Code editor and Azure cloud to create a low-cost serverless web API. These tutorial
| 2. NosaL Databases modules are intended to be followed in the order presented below.
3. Serverless Functions and
APls
Modules

| Credits and acknowledgement

1. VMs and Workstations

2. NoSQL Databases

3. Serverless Functions and APIs

Complex goal: Interrelated data and metadata

We have profile metadata and observational data from two sensors

Next: Review the basic build / collaborate structure

Then: Ademo

Finally: Some details we hope are of interest, Q&A

In English

The blue researcher/builder publishes both data and an access API to the cloud.
This is open to everyone.

The researcher/builder next publishes an example Client on GitHub.
The green colleague downloads the Client and uses it to explore the data.

“Exploring the data” happens without needing to know how the system was built.

- N o

Spend IAM ym Browser GitHub
Serverless O
/ Nosal VSCode

Cloud Portal \ 7 ST P » oceanclient
Cloud VM
..................... N
.............. = S

Function ~ -

L Apps
N\

~ NoSOlL DB
NoSQL DB

bash JuPyter } &/ T g e ey
upyter TR
, : \
—d \ profiles / : leg,,
VSCode (VM) e 2 \\
)t | £\
salinity

~~ ﬂ\

Previous slide simplified

My laptop

Azure Portal

VM (VSCode Server)
Azure Functions
Azure CosmosDB

| use the Naomi (MSE544) tutorial to
orchestrate these resources; and then |
follow the narrative for the periodic table.

In the process | learn how the end result (a
data API) is constructed from data in a
NoSQL database wired up to a serverless
function triggered by HTTP requests.

| have enough now to build my own
Shoebox Gateway. | also build a custom
Shoebox Client that | publish on GitHub.

Demo

Detalls...

depth (m)

Detail: Two days of profiler metadata

Shallow profiler depth over two days

—-25 4

_50 ~

-75 1

—100 A

—125 A

—150

=175 A

—200 A

slow
descent

AT
REST
midnight

slow
descent

noon

01-01 00 01-01 06 01-01 12

01-01 18 01-02 00 01-02 06 01-02 12
Hours (UTM)

01-02 18

01-03 00

Detail: Why NoSQL?

e Actually everything here could be done in SQL

e Transactions were engineered to be safe during the advent of SQL
o

NoSQL

Link to NoSQL lecture notes

https://docs.google.com/presentation/d/1-eQ6qgeTaExS_6Cxh7Wq9LFpqbD49ZX3kXazOPNc7Js/edit?usp=sharing

ACID view of database transactions

Atomicity: Transactions comprised of many statements are treated as single
events

Consistency: Transactions move between consistent states of the database

Isolation: Analogous to linearity, in that multiple transactions proceeding
asynchronous result in the same state as if they were executed sequentially

Durability: Completed transactions are not lost in the face of system failures such
as power outage. Often implies a non-volatile memory component.

What does ACID mean for research data?

The event of interest is a fransaction which changes the state of the database.
Scientific data are subject to change. Derived data can be re-derived using new
algorithms or otherwise modified or annotated. Sensor data over particular time
intervals may be invalidated due to becoming uncalibrated. A time series may be
augmented with new data products, for example water density inferred from
temperature, salinity and pressure.

The ACID acronym calls out a set of desirable database attributes that ensure the
data are available and won’t be corrupted by colliding transactions and such.

A NoSQL Timeline

(more on NoSQL follows after
we push through with a Goal 1
lightning tour: Periodic Table)

1998

2005

2009

2010

2012

2016

2017

Carlo Strozzi coined the term NoSQL, fo use for his open-source
relational database that did not use standard SQL

Initial release of Google Bigtable, a wide-column database; was
made publicly available in 2015, as part of Google Cloud

NoSQL became widely popular with the introduction of the first
document-oriented database, MongoDB

More NoSQL databases introduced:
Apache HBase (wide-column), Cassandra (wide-column),
Couchbase (key-value cache), Neo4J (graph)

Amazon introduces DynamoDB, a key-value store

MongoDB Atlas, MongoDB’s database as a service (Dbaas),
intfroduced

Azure CosmosDB (key-value store)

Detail: Testing the profile APl in VSCode

9SG ® http://localhost:7071/api profile?day=30&@

Pretty-print

{
"rest start time": "2022-01-30 23:25:00",

"rest start depth": -192,

"ascent start time": "2022-01-30 20:37:00",
"ascent start depth": -191,

"descent start time": "2022-01-30 21:49:00",
"descent start depth": -13,

"descent end time": "2022-01-31 02:08:00",
"descent end depth": -189,

"id": "2022-01-30 20:37:00"

Detail: Moving the profile APl up to the big leagues

S 2 https@raphy.azurewebsites.net/api/profile ay=17&index=9

Pretty-print

{
"rest start time": "2022-01-17 23:26:00",

"rest start depth": -190,

"ascent start time": "2022-01-17 20:37:00",
"ascent start depth": -193,

"descent start time": "2022-01-17 21:49:00",
"descent start depth": -13,

"descent end time": "2022-01-18 02:09:00",
"descent end depth": -189,

"id": "2022-01-17 20:37:00"

M vm
Serverless

wo Detail: The Azure portal in action

Cloud Portal

« > C 95 https:browse/Microsoft.Compute%ZFVirtuaIMachines & % @ [1-‘

1A
Spend

+ Create v -t & . . £33 Manage view () Refresh ExporttoCSV %5 Open query @ Assigntags ([> Start
[Filter for any field... Subscription equals all Type equals all Resource group equals all X Location equals all X +7 Add filter
Showing 1 to 6 of 6 records. I No grouping v l [== List vie
IE] Name T Subscription Ty Resource group T Location Ty Status Ty Operating system T Size T,
[:] — . West US 2 Stopped (deallocated) Linux Standa
D — | Central US Stopped (deallocated) Linux Standa
D — West US 3 Stopped (deallocated) Linux Standat

— rob-jan-2025-azure-vm [Rl 8 LOWES West US 2 Stopped (deallocated)) Linux Standa

Detail: VSCode in action

L = £ db-populate [SSH: 20.98.104.80] 8 B DQD - o x i+
@ e. R B0 @ - @ process.py X B periodic-table.csv requirements.txt M .-
T env @ process.py
B periodic-table.csv 30 except KeyError:

@ _precess_profiles.py e
® process.py 3
3 ONTAINER_ID = "elements"
requamements.txt 36

e name and container name we want to work with==

33 # Spe
DATABASE_ID = "periodic-db"

37 def dataframe_to_dicts(df):

38 """Function to loop through rows in a spreadsheet and spit then

39 out as Python dictionaries/NoSQL-style 'documents'"""

40 for record in df.to_dict(orient="'records'): i
41 ‘ yield {k:v for k,v in recor‘d.litems() if not pd.isna(v)}

42

PROBLEMS ~ OUTPUT TERMINAL -+ # bash - db-populate +~ [W -+ A X

Use **tastenavX* to activate the conda test environment
Uso relocate and activate the development environment
(base) azureuser@rob-jan-2025-azure-vm:~/db-populate$

Note: The nexus documentation website points out stop/start ideas such as defining an
alias for restoring the working environment (in this case ‘robotron’); then printing a
reminder of this alias as the bash shell starts when launching VSCode as a Virtual Machine
terminal-slash-development environment.

1

> SSH: 2t

VSCode works as an IDE on any VM (not just Azure)

'd &l ®0A

Detail: Azure Database Service

Go back to the web portal and search for . Open up the dashboard for

Azure Cosmos DB ¥§

Microsoft Azure £ Cosmos @ copilot |

Azure services - Lol *

Services See all
.a | (%)

€ Azure Cosmos DB

Create a
resource

App Resource
€ Azure Cosmos DB for MongoDB (RU) e

; € Azure Cosmos DB for MongoDB (vCore)

Detail: Creating a NoSQL Database in CosmosDB

Azure supports a number of different database technologies, all of which are provided

with the brand name “"Cosmos DB". Today, we'll be makind a NoSQL document store,

which they call “Cosmos DB for NoSQL". Click the gy button under the

Cosmos DB for NoSQL heading:

Microsoft Azure L Search resources, services, and docs (G+/)

Home > Azure Cosmos DB >

Create an Azure Cosmos DB account

Which API best suits your workload?

@ copilot ‘ g

Q

Azure Cosmos DB is a fully managed NoSQL and relational database service for building scalable, high performance applications. Learn

To start, select the API to create a new account. The API selection cannot be changed after account creation.

Azure Cosmos DB for NoSQL

Azure Cosmos DB's core, or native API for
working with documents. Supports fast, flexible
development with familiar SQL query language
and client libraries for .NET, JavaScript, Python,
and Java.

Create earn more

Azure Cosmos DB for PostgreSQL

Fully-managed relational database service for
PostgreSQL with distributed query execution,
powered by the Citus open source extension.
Build new apps on single or multi-node clusters—
with support for JSONB, geospatial, rich indexing,
and high-performance scale-out.

m k—""“” mofe

Az

Full
for

Mo
Azu

Detall: In-portal Data Explorer

Give feedback

Tell 1is ahaut vour exoerience with denloyment

The portal will bring us to a quickstart page, but we're not going to follow those
instructions. Instead, select the option on the left:

Microsoft Azure £ Search resources, services, and docs (G+/) @ copilot | Iy & £33

Home > Microsoft.Azure.CosmosDB | Overview > student-periodic-db

&, student-periodic-db | Quick start #

Azure Cosmos DB account

P Search . Congratulations! Your Azure Cosmos DB account was created.
€ Overview & Now, let's connect to it using a sample app:
W Activity log Choose a platform
A Access control (IAM) .NET Java Nodejs Python
€ Tags —
A Diagnose and solve problems 1 Step 1: Add a container
@ Cost Management In Azure Cosmos DB, data is stored in containers.

Create ‘Items’ container with 400 Request Units per second (RU/s) throughput capacity, for
Notifications container, go to Data Explorer and find the ToDolist database.

D Stan i Dawmlead dnd i vour NET: 365

Detail: Azure portal: Directed to the NoSQL database

Microsoft Azure P Search resources, services, and docs (G+/) I [P -
Home > Azure Cosmos DB

Azure Cosmos DB D robs-data-ocean } Data Explorer
UW (cloud.washington.edu) AnureSesmas DB :
+ Create) Restore - L Search ¢ ® ‘ B C3v v [Newitem &) [Delete 7 Upload Item
i o
Filter for any field i, Oveniew 2 Home osb_s..Items X
i ity | + New Container v
Name & Activity log SELECT*FROM ¢ | Type a query predicate (e.g. WHERE cid="1 1 query all documents
Aq Access control (IAM) " 1 {
22 ® Home id /Day 2 "Timestamp”: "2022-01-01 00:00:00.097717760",
v 0 Tags hat 2 3 “depth™: 192.45763792027685,
L 4 ~ & oceanography 2022-01-01 00:00:00.0997177.... a “salinity": 33.930419370021234,
T «s.| ¥ Diagnose and solve problems > O osb_profiles 2022-01-01 00:00:01.0976209 2 N 20220l e 00100 00, 09T L7 0ns
= - . 6 [
ese] © CostManagement v O osb_salinity [2022-01-0100:00:02.0971069... : Z:ig o
... & Quickstart — 101 o 9 ““attachments”: "attachments/",
4 [J 2022-01-0100:00:03.0972175... - bt
| @ Data Explorer Scale & Settings (] 2022-01-0100:00:040971197... A

& Mirroring in Fabric (Preview)

> Stored Procedures 2022-01-01 00:00:05.0975436...

» Settings > User Defined Functions [2022-01-01 00:00:06.0975488.
> Integrations > Triggers [J 2022-01-0100:00:07.0972436...
»! Containers > O osb_temp [[] 2022-01-0100:00:08.0971463..

> Monitoring [] 2022-01-0100:00:09.0972564...

v 8 periodic-db
> Automation ; g
> O elements [] 2022-01-0100:00:10.0972636...

> Help M | annn ax as anan < anmamas

Detail: API self-documenting

<« > C 2% https://oceanography.azurewebsites.net/api/info

Oh Galaga! (info)

The 'profile' API has three necessary parameters:
The route is 'profile' as in '/api/profile?’
The first parameter is ‘'day’', an integer from 1 to 31.
This selects a day of the month of January 2022.
Note: Sensor data are in place only for January 1 through 5
The second parameter is 'index', an integer from 1 to 9.
This selects one of the (up to) 9 profiles on that day.
Profile 4 is local midnight. 9 is local noon.

Example: <url>/api/profile?day=1&index=4

Returns: Four profile timestamps

Detail: Simplest possible Python Client

import requests

r = requests.get(“https://oceanography.azurewebsites.net/api/info”)

print(r.text)
Oh Galaga! (help)

The 'profile' API has three necessary parameters:
The route is 'profile' as in '/api/profile?’
The first parameter is 'day', an integer from 1 to 31.
This selects a day of the month of January 2022.
prOdUCeS: Note: Sensor data at:‘e ir.1 place onl)./ for January 1 through 5
The second parameter is 'index', an integer from 1 to 9.
This selects one of the (up to) 9 profiles on that day.
Profile 4 is local midnight. 9 is local noon.

Example: <url>/api/profile?day=1&index=4

Returns: Four profile timestamps

https://oceanography.azurewebsites.net/api/info

...same again but using the API to get a profile...

[6]: r = requests.get('https://oceanography.azurewebsites.net/ap{/profile?day=5&index=4")
print(r.text.replace(",", ",\n"))

{"rest start time": "2022-01-05 ©8:27:00",
"rest start depth": -196,

"ascent start time": "2022-01-05 ©7:17:00",
"ascent start depth": -194,

"descent start time": "2022-01-05 ©87:54:00",
"descent start depth": -109,

"descent end time": "2022-01-05 12:56:00",
"de
"id": "2022-01-05 07:17:00"}

Detail: Self-testing???

Upon sober recursion | believe api

testing is better done by a non-self.

Detail: More on NoSQL

MongoDB is the original open source NoSQL DBMS

https://www.mongodb.com/resources/basics/databases/nosqgl-explained

https://www.mongodb.com/resources/basics/databases/nosql-explained

Conclusions

Open science while not trivial is worth consideration of the effort investment
e Publishing data for open access is facilitated by cloud tech
o APl in serverless functions tapping in NoSQL

e This deck (to be made available) ties to other resources
o The MSE544 “Serverless Azure Tutorial” by Naomi Alterman
o Publishing / accessing cloud data: Periodic table and ocean observatory examples:

e The CloudBank help desk is help@cloudbank.org > R

-The CloudBank team

https://docs.google.com/presentation/d/1qYIf3mTcfYtRY |-zPkagblFLe2cHkuAlwnGnJpRQLc

Thanks! \

https://cloudbank-project.github.io/az-serverless-tutorial/
https://github.com/robfatland/nexus/blob/gh-pages/data/api.md
mailto:help@cloudbank.org
https://docs.google.com/presentation/d/1qYIf3mTcfYtRY_I-zPkaqbIFLe2cHkuAIwnGnJpRQLc/edit#slide=id.g327a39294ed_0_12

4 Demo Backup Slides: What is supposed to happen

$ git clone https://github.com/robfatland/oceanclient

I ® http://localhost:8888/lab/tree/oceanclient/oceanclient.py

:, File Edit View Run Kernel Tabs Settings Help

«n M- . o

BB / oceanclient /

Name -

™ LICENSE

Last Modified

27 minutes ago
- @ oceanclient.py

M README.md 27 minutes ago

6 minutes ago

27 minutes ago

4 Demo Backup Slides: What is supposed to happen

import oceanclient as oc
dfT, dfS = oc.Chart('2022-01-085', 9)

data query result type: <class 'list'> with 8760 elements
prep time 6.29 seconds; data vector length: 4380

Temp deg C (red, lower x-axis) and Salinity ppt (blue, upper x-axis)
32.00 32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00
0 . . :) .) .

Start UTC: 2022-01-05 20:37:00.4 NOON local

25 A

50 A

75 4

100 4

125 A

150 A

175 A

200 T T T T
7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

4 Demo Backup Slides: What is supposed to happen

dfT

4375

4376

4377

4378

4379

Timestamp
2022-01-05 20:37:00.482559488
2022-01-05 20:37:01.482462720
2022-01-05 20:37:02.482989568
2022-01-05 20:37:03.482579456

2022-01-05 20:37:04.482899456

2022-01-05 21:49:55.597626880
2022-01-05 21:49:56.597320704
2022-01-05 21:49:57.597327872
2022-01-05 21:49:58.598376960

2022-01-05 21:49:59.598070784

4380 rows x 3 columns

depth
199.660778
199.662944
199.664009
199.659779

199.655482

15.886139
15.423047
15.265456
15.411262

15.726319

temp
7.943294
7.943356
7.943480
7.943480

7.943542

10.028767
10.028833
10.028635
10.028701

10.028635

dfs

4375

4376

4377

4378

4379

Timestamp
2022-01-05 20:37:00.482559488
2022-01-05 20:37:01.482462720
2022-01-05 20:37:02.482989568
2022-01-05 20:37:03.482579456

2022-01-05 20:37:04.482899456

2022-01-05 21:49:55.597626880
2022-01-05 21:49:56.597320704
2022-01-05 21:49:57.597327872
2022-01-05 21:49:58.598376960

2022-01-05 21:49:59.598070784

4380 rows x 3 columns

depth
199.660778
199.662944
199.664009
199.659779

199.655482

15.886139
15.423047
15.265456
15.411262

15.726319

salinity
33.967098
33.967234
33.967048
33.966984

33.966795

32415099
32414741
32414862
32414864

32414663

4 Demo Backup Slides: What is supposed to happen

def Chart(s, n):
'"'oceanclient.Chart(s, n) is hardwired into a demonstration data API. The source data is
from the Regional Cabled Array program, Oregon Slope Base shallow profiler. The function
returns two pandas Dataframes: one for temperature and one for salinity. It also creates
a matplotlib chart of the data. Argument 's' is a date in January 2022 formatted as '2022-01-83'.

Argument 'n' is an integer from 1 to 9 inclusive which is the profile index for that day.'''
import requests, time, pandas as pd

from numpy import datetime64 as dt64, timedeltaé4 as tdé4

from matplotlib import pyplot as plt

toc = time.time()

<::EEEEEEErt Chart() arguments to API-format s%EEEéE::D
day=sTr(imttste+2e4>-
index=str(n)

